

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Geotechnical Engineering (16CE122)	Course & Branch: B.Tech - CE		
Year & Sem: III-B.Tech & I-Sem	Regulation: R16		
<u>UNIT –I</u>			
 a) Explain the phenomenon of formation and transportation of soils. b) Write notes on structure of soils. 	5M 5M		
2. a) Explain with sketches various types of soil structures.b) Explain Clay mineralogy.	5M 5M		
3. a) Using three phase diagram of soil, derive an expression for water of void ratio, Specific gravity and degree of saturation.	content in terms of 5M		
b) A saturated soil sample has a water content of 25% and unit weigh Specific gravity of the solid particles, dry unit weight and void rational states and solid particles.	t of 20 KN/m ³ . Determine the io. $5M$		
4. Using three phase diagram of soil, derive an expression for saturated Void ratio, unit weight of water, specific gravity and degree of saturated states and the states of saturated states are specific gravity and degree of saturated states are specific gravity and specific gravity and degree of saturated states are specific gravity and specific gravity are specific gravity and specific gravity are specific grav	unit weight of soil in terms of ation. 10M		
5. A sample of clay soil of volume 1×10^{-3} m ³ and weight 17.62 N, after	r being dried out in an oven had		
A weight of 13.68 N. If the specific gravity of the particle was 2.69 f	ind void ratio, saturated unit		
Weight, dry unit weight and water content.	10 M		
 6. a) The unit weight of sand backfill was determined by field measurer Water content at the time of test was 8.60% and the unit weight of 25.50kN/m³. In the laboratory the void ratio in the loosest and dens 0.642, 0.462 b) What was the relative density write the importance of this term? 	ments to be 17.13kN/m ³ . The the solid constituents was sest state ware found to be 5M 5M		
7. a) Explain Relative density.b) How to determine field density by using sand replacement method	5M 5M		
8. a) Briefly explain the Procedure of core cutter methodb) Explain Determination of specific gravity in the laboratory	5M 5M		
9. Describe in detail the Indian System of soil classification. When wou For Soils?	uld you use dual symbols 10M		
 10. Define the following: (<i>i</i>) Flow index, (<i>ii</i>) Toughness index, (iii) Liquidity index, 	2M 2M 2M		
Geotechnical Engineering (16CE122)	Page 1		

	QUESTION BANK 2018
(<i>iv</i>) Shrinkage index,(v) Plasticity index,	2M 2M

	0040
QUESTION BANK	2018

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (OBJECTIVE)									
Subject with Code : Geotechnical Engineering (16CE122) Course & Branch: B.Tech - CE									
Year & Sem: III-B.Te	ech & I-Sem			Regulation:	R16				
		UN	<u>IT –I</u>						
1. Soils are basically					ſ	1			
A) Organic Materia	ls B) Inorganic Ma	terials	C) A&B	D) None	L	,			
2. The behavior of cla	y is governed by		,	,	ſ	1			
A) Mass energy	B) Surface energy	gv	C) Friction	D) None	L	L			
3. Lacustrine soil is a	<i>,</i>		,	,	ſ	1			
A) Soil Deposited in S	Sea		B) Wind – bo	rne Soil	L				
C) Soil deposited In I	Lake		D) Soil forme	d by vegetation matte	r				
4. Chemical weatherin	g occurs because Of		,		ſ	1			
A) Oxidation	B) Carbonation	C) Hy	dration	D) All The Above	_	-			
5. The term soil Mech	anics was coined by	-			[]			
A) Terzaghi	B) Cassagrande	C) Ne	wmark	D) Rankine					
6. Talus is the soil trar	isported by				[]			
A) Gravitational	B) Water	C) Gla	acier	D) Wind					
7. Varved clay is					[]			
A) A Mixture of sand,	silt, clay		B) A Chemica	ally bonded soil mixtu	ıre				
C) Alternate thin layer	s of silt and clay		D) Decompos	ed volcanic ash depos	sit				
8. Aeolian soils are					[]			
A) Residual soils	B) Wind deposits	C) Gr	avity deposits	D) Water deposits					
9. Loam means					[]			
A) Sandy clay with a l	ittle slit		B) Silty clay v	with a little sand					
C) Sand, silt and clay			D) Sand, slit a	and gravel					
10. Human is					[]			
A) A half decomposed	l soil		B) Fully deco	mpose soil					
C) Inorganic soil			D) A type of 1	rock					
Geotechnical Enginee	ering (16(F122)								

	QUESTION E	BANK	2018	
mine		[]	
B) Specific	e gravity			
D) Specific	gravity and water conte	nt.		
surated soil is 100%, then the	void ratio is equal to	[]	
A) Mass specific gravity B) True specific gravity.				
C) Half of true specific gravity D) No relation with specific gravity.				
ximum void ratio is		[]	
C) Silt	D) Clay			
veight is constant		[]	
B) Dry unit	weight			
D) Unit we	ight of solids			
res at the minimum density, t	he void ratio is	[]	
C) 0.65	D) 0.34			
the ratio of volume of		[]	
A) Void to solids volume B) Voids to soil volume				
D) Solids to	o total volume			
can have the following value	s.	[]	
B) More that	an one			
D) Less that	n 0.5			
at the maximum density, the	void ratio is	[]	
C) 0.65	D) 0.35			
o is		[]	
C) 1	D) 1.5			
g water content is		[]	
A) Oven – drying method B) Alcohol method				
C) Calcium carbide method D) Pycnometer method				
		[]	
C) e>1	D) 0 <e<1< td=""><td></td><td></td></e<1<>			
osity is		[]	
C) 0.666	D) 0.5			
	mine B) Specific D) Specific D) Specific D) Specific D) No relat B) True spec D) No relat ximum void ratio is C) Silt veight is constant B) Dry unit D) Unit weight res at the minimum density, the C) 0.65 the ratio of volume of B) Voids to D) Solids to D) Solids to D) Solids to D) Solids to D) Solids to D) Less that at the maximum density, the v C) 0.65 o is C) 1 g water content is B) Alcohol D) Pyenome	QUESTION E mine B) Specific gravity D) Specific gravity and water conter B) True specific gravity. D) No relation with specific gravity. Minum void ratio is C) Sit D) Clay veight is constant B) Dry unit weight of solids res at the minimum density. the void ratio is C) 0.65 D) 0.34 the ratio of volume of B) Voids to sol volume D) Solids to tratio volume D) Solids to tratio is C) 0.65 D) 0.35 at the maximum density, the void ratio is C) 0.65 D) 0.35 ois C) 1 D) 1.5 c) 0.65 D) 0.35 ois C) 1 D) 1.5 gravater content is B) Alcohol method D) Pycnometer method D) 0<<<1	QUESTION BANKmineB) Specific gravityD) Specific gravity and water content.D) Specific gravity and water content.D) No relation is equal toB) True specific gravity.D) No relation with specific gravity.C) SitD) Clayveight is constant[B) Dry unit weight of solidsres at the minimum density, the void ratio isC) 0.65D) 0.34C) 0.65D) 0.34the ratio of volume of[B) Voids to soil volume[D) Solids to volume[D) Solids to soll volume[D) Less than -1 [D) Less than -1 [D) Less than -1 [C) 0.65D) 0.35[o is[C) 1D) 1.5[a the maximum density, the vol ratio is[C) 0.65D) 0.35[a the maximum density, the vol ratio is[C) 0.65D) 0.35[a the maximum density, the vol ratio is[C) 0.65D) 0.35[a state content is[B) Alcohol method[D) Pycnometrom tentod[C) $0.5 ^{1}$ D) 0.Sity is[C) 0.66D) 0.5	

Geotechnical Engineering (16CE122)

23 .In a soil mass if volt respectively	ume of voids Is equal to	volume of solids, then va	alues of voids ratio and p	orosity [are]
A) 0.5	B) 1, 0.5	C) 1.5, 0.5	D) 0.5, 1.5		
24. In case of silts the fe	ollowing type of soil stru	cture is exhibited		[]
A) Single grained	B) Honey-combed	C) Flocculated	D) Dispersed		
25. The shape of the cla	y particle is			[]
A) Rounded	B) Angular	C) Flaky	D) Any of a, b, c		
26. Sand particles made	e up of			[]
A) Rock minerals	B) Kaolinite	C) Illite	D) All the above		
27. Among the given so	oils, the specific surface a	area is highest for		[]
A) Gravel	B) Sand	C) Silt	D) Clay		
28. The soil sample use	d for Liquid limit, Plastic	c limit and Shrinkage lin	nit tests should be	[]
A) 75 microns	B) 150 microns	C) 200 microns	D) 425 microns		
29. A clay is said to be	fat when its liquid limit i	S		[]
A) 10 to 20%	B) 20 to 30%	C) 30to 50%	D) more than 50%		
30. The most uniformly	graded soil is			[]
A) Dune sand	B) Loess	C) Talus	D) Loam		
31. In hydrometer analy	vsis the principle used is			[]
A) Newton's law	B) Darcy's law	C) Stoke's law	D) Rehabann's law		
32. The effective size of	f the soil is			[]
A) D ₁₅	B) D ₈₅	C) D ₁₀	D) D ₉₀		
33. Soil which contains	the particles of different	sizes in good proportion	is called	[]
A) Uniform soil	B) Well graded soil	C) Consistent soil	D) None of the above		
34. The shrinkage limit	the degree of saturation	is		[]
A) Liquid limit- plastic	e limit	B) Liquid limit	- shrinkage limit		
C) Plastic limit – liquid	limit	D) Plastic limit	-shrinkage limit		
35. The biggest size of o	clay size particle is			[]
A) 0.0002mm	B) 0.002mm	C) 0.02mm	D) 0.075mm		
36. The symbol 'SM' in	ndicates			[]
A) Sandy silt	B) Medium sand	C) Silty sand	D) Medium		

				QUESTION BAN	١K	201	18
37. Silty clay indicates					[]
A) Silt percentage is greater than that of clay B) Clay percentage is greater than that of						lt	
C) Both silt and clay have equal proportion D) None							
38. Amongst the following, the smallest particle size is					[]
A) Silt	B) Clay	C) Sand	ł	D) Colloidal			
39. The maximum size	of fine grained soils is				[]
A) 0.002mm	B) 0.075mm	C) 0.75	mm	D) 4.75m			
A) Silt percentage is greater than that of clay B) Clay percentage is greater than that of Clay C) Both silt and clay have equal proportion D) None 38. Amongst the following, the smallest particle size is D) Colloidal A) Silt B) Clay C) Sand D) Colloidal 39. The maximum size of fine grained soils is D) 0.002mm D) 4.75m 40. A soil has the liquid limit of 30. The corresponding plasticity index given by the A-line is				[]	
A) 7.3	B) 7.5	C) 9.0		D) 9.5			

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Geotechnical Engineering (16CE122)

Course & Branch: B.Tech - CE

Regulation: R16

Year & Sem: III-B.Tech & I-Sem

<u>UNIT –II</u>

1. a) Explain the phenomenon of capillary rise in soil and write an expression for the Capillary rise.						
b) Write an expression for determining permeability of soil by falling head permeameter and Explain the terms	5M					
2. A falling head permeability test is to be performed on a soil sample whose permeability is estin To be about 3×10^{-5} cm/sec. What diameter of the stand pipe should be used if the head is to c From 27.5 cm to 20.0 cm in 5 minutes and if the cross-section area and length of the sample ar Respectively 15 cm ² and 8.5 cm. How much time will it take for the head to drop from 37.5 cm 30.0 cm.	nated lrop e to 10M					
3. Define permeability & Darcy's law. How do you determine the permeability of a clayey soil in Laboratory? Write the formula you use and explain the terms	the 10M					
4. Write the permeability equation by constant head method and explain factors effecting permeab	oility.					
5. Briefly explain determination of permeability by stratified soil system	10M					
6. a) Explain factors effecting permeability	5M					
b) Estimate the quantity of flow of water through a soil mass in a 300 sec period when a consta Head of 1m is maintained. The length of the sample is 150 mm and the cross sectional area is 100×100 mm. The coefficient of permeability of the soil sample is 1×10^{-1} mm/s.	nt s 5M					
7. What is flow net? Describe its properties and applications. How to construct a flow net?	10M					
8. Explain in details about Quick sand condition.	10M					
9. A 1.25 m layer of the soil ($G = 2.65$ and porosity = 35%) is subject to an upward seepage head 1.85 m. What depth of coarse sand would be required above the soil to provide a factor of safet 2.0 Against piping assuming that the coarse sand has the same porosity and specific gravity as a soil and that there is negligible head loss in the sand.	of y of the 10M					
10. An earth dam is built on an impervious foundation with a horizontal filter at the base near the The permeability of the soil in the horizontal and vertical directions are 3×10^{-2} mm/s and 1×10^{-2} mm/s respectively. The full reservoir level is 20 m shows the filter. A flow set constant	toe.					

 1×10^{-2} mm/s respectively. The full reservoir level is 30 m above the filter. A flow net constructed For the transformed section of the dam, consists of 4 flow channels and 16 head drops. Estimate the Seepage loss per meter length of the dam. 10M

Prepared By: K.HEMANTH KUMAR

OUESTION BANK	2018
QUESTION DAMK	2010

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 <u>QUESTION BANK (OBJECTIVE)</u>							
Subject with Code : (Subject with Code : Geotechnical Engineering (16CE122) Course & Branch: B.Tech - CE						
Year & Sem: III-B.Te	ech & I-Sem		Regulation: R	16			
		<u>UNIT –II</u>					
1. The property of soil	which allows water to f	low through the soil is k	nown as	[]		
A) Capillarity	B) Permeability	C) Fluidity	D) Viscosity				
2. Darcy's law is appl	icable if a soil is			[]		
A) Homogeneous	B) Incompressible	C) Isotropic	D) All the Above.				
3. According to Darcy	's law, the flow velocity	can be obtained by		[]		
A) $\frac{KI}{A}$	B) KIA	C) KI	D) $\frac{K}{A}$				
4. Capillary force is de	ependent on			[]		
A) Pore pressure	B) Water content	C) Depth to water tabl	e D) Surface tension of	water	•		
5. Velocity heads in so	oils will be			[]		
A) Very High	B) High	C) Negligible	D) Can't say.				
6. The pore water pres	sure in the capillary zon	e is		[]		
A) Positive	B) Negative	C) Zero	D) Can't say				
7. A soil which does n	ot permit the passage or	seepage of any permeate	though its voids,				
is known as				[]		
A) Solid soil	B) Hard soil	C) Impermeable soil	D) Honey comb soil.				
8. In most of the practi	ical flow problems in so	il mechanics, the flow is		[]		
A) Laminar	B) Turbulent	C) Supersonic	D) Subsonic				
9. The value of Reyno	lds's number for lamina	r flow through soil is		[]		
A) Less than 20,000	B) Less than 2,000	C) Less than 200	D) Less than 20				
10. Magnitude of capil	llary rise is more in			[]		
A) Silts	B) Sands	C) Clays	D) Gravels.				
11. Piping in soils is d	ue to			[]		
Geotechnical Enginee	ering (16CE122)				Page 1		

				QUESTION BAN	NK	2018			
A) Low exit gradient									
B) Erosion of subsoil by high velocity of seepage flow									
C) Leakage of water through pipes laid in dams									
D) Passage of water through well-connected pores in soil									
12. Physical properties of a permeate which influences the permeability are [
A) Viscosity only B) Unit weight only C) Both viscosity and unit weight D) None									
13. Units of co-efficien	t of permeability				[]			
A) cm/s	B) s/cm		C) cm/s ²	D) s^2/cm					
14. Which of the follow	ving soils has larges	st peri	neability?		[]			
A) Sand	B) Gravel		C) Silt	D) Clay					
15. Falling head permea	ameter is preferable	whe	n soil sample is		[]			
A) Clayey	B) Silty sandy		C) Sandy	D) Sandy gravel.					
16. In the case of stratif	fied soils, the perme	eabilit	y's Kx and Kz along act	ross stratification are rel	ated	as			
A) $Kx < Kz$ B) $Kx > Kz$ C) $Kx = Kz$ D)None									
17. The range coefficient of permeability of sands is about [
A) <10 ⁻⁶	B) 10 ⁻⁴ to 10 ⁻⁶		C) 10 ⁻² to 10 ⁻⁴	D) 10 ⁻² to 1					
18. The value of coeffic	cient of permeabilit	y of c	lays is		[]			
A) <10 ⁻⁶	B) 10 ⁻⁴ to 10 ⁻⁶		C) 10 ⁻² to 10 ⁻⁴	D) 10 ⁻² to 1					
19. Soil with a value fo are classified as	or coefficient of perr	neabi	lity ranging between 10	⁻⁴ to 10 ⁻⁶	[]			
A) Pervious soils	B) Semi-pervious	soil	C) Impervious soils	D) All the above					
20. The expression for	critical gradient is				[]			
A) $i_c = \frac{G-1}{1+e}$	B) $i_c = \frac{G+1}{1+e}$		C) $i_c = \frac{G-1}{1-e}$	D) None					
21. The presence of entrapped air in a soil will []			
A) Increase the permea	bility E	B) Dec	crease the permeability						
C) No effect on permeability D) Can't say									
22. The presence of organic matter in a soil will []			
A) Increase the permea	ability B) Dec	rease the permeability						
C) No effect on permea	ability D) Diff	ficult to guess						
Geotechnical Engineer	ring (16CE122)					Page 1			

ī.

23. The phenomenon is tendency to move up i	in up which a co n the direction of	ohesion less soil loses all its sho f flow, is known as	ear strength and the soil	particle [es have a]
A) Boiling condition	B) Quick sand	C) Quick condition	D) All the a above		
24. Flow net consists o	f a number of str	ream line and equipotential line	which are	[]
A) Parallel to each othe	er	B) Perpendicular to the equipo	tential lines		
C) Orthogonal to each	other	D) None of the above			
25. Flow net is used fo	r the determination	on of		[]
A) Exit gradient	B) Seepage	C) Hydrostatic pressure	D) All the above		
26. The flow net can be	e obtained by			[]
A) Electrical analogy r	nethod B) Gra	phical method C) Solution of	laplace equations D) Al	l the al	pove
27. The shape factor of	a flow net is def	fined as		[]
A) $\frac{Nd}{Nf}$	B) $\frac{Nf}{Nd}$	C) Both	D) None		
28. The phreatic line is				[]
A) The u/s face of the	earth dam	B) D/S face of the ear	th dam		
C) The top flow line		D) None of the above			
29. For large engineeri	ng projects the p	ermeability is determined by usi	ng	[]
A) Constant head	B) Falling head	d C) Pumping in	D) Pumping out		
30. In a coarse grained	soil having e=0.	75, G=2.75, the critical hydrauli	c gradient is	[]
A) 0.25	B) 0.5	C) 1.0	D) 0.75		
31. Magnitude of capil	lary rise more in			[]
A) Silts	B) Sands	C) Clays	D) Gravel		
32. The seepage (q) the	ough earth dam	can be calculated by using		[]
A) $kh(\frac{Nd}{Nf})$	B) $kh\sqrt{(\frac{Nf}{Nd})}$	C) kh(NdxNf)	D) $kh(\frac{Nf}{Nd})$		
33. When the water lev	vel in a lake (or ta	ank) rises, the effective stresses	in the soil below are	[]
A) Increased	B) Decreased	C) Unchanged	D) None of the above		
34. In a saturated soil of depth will bekn/m ³	leposit having a o	density of 25kn/m ³ , the effective	normal stress on a horiz	ontal p [lane at 4m]
A) 20	B) 40	C) 60	D) 80		
Geotechnical Enginee	ring (16CE122)				Page 1

			QUESTION BAN	К	2018
35Capillary force is d	ependent on			[]
A) Pore pressure	B) Water content	C) Depth of water	D) Surface tension		
36.For a given soil ma direction is $5x10^{-3}$ cm/se A) $2x10^{-4}$	ss the average permeabi ec,then permeability in ve B) 5x10 ⁻⁴	ility is 10 ⁻³ cm/sec and c ertical direction is—cm/s C) 4x10 ⁻³	oefficient of permeabilit sec D) 6x10	ty in [horizontal]
37. Which of the follow	ving is an effective press	ure		[]
A) Pore water pressure	B) Capillary pressure	C) Water load	D) None of the above		
38. Space between two	adjacent flow lines is cal	lled		[]
A) Flow potential	B) Flow path	C) Flow field	D) Flow length		
39. Piping occurs when				[]
A) Effective stress 0	B) Flow is down word	C) Flow is up word	D) Flow is horizontal		
40. Coefficient of perm	eability of soil varies app	proximately as		[]
A) D ₁₀ ²	B) √ <i>D</i> 10	C) D ₃₀ ³	D) All of these		

Determine the OMC and maximum dry density. Draw 'Zero-air-void line'

10. The soil from a borrow pit is at a bulk density of 17.50 kN/m3 and a water content of 12.3%. It is Desired to construct an embankment with a compacted unit weight of 19.82 kN/m3 at a water Content of 17%. Determine the quantity of soil to be excavated from the barrow pit and the amount of water to be added for every 100 m3 of compacted soil in the embankment. 10M

Prepared By: K.HEMANTH KUMAR

DHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583						
QUESTION BANK (OBJECTIVE)						
Subject when code : Geotechnical Engineering (16CE122) Course & B	ranch: I	3.Tech - CE				
Year & Sem: III-B.Tech & I-SemRegulation:	R16					
<u>UNIT –III</u>						
1. The total load acting on the soil mass per unit area is called	[]				
A) Total stress B) Neutral stress C) Effective stress D) None						
2. The stress induced in the pore water is termed as	[]				
A) Total stress B) Neutral stress C) Effective stress D) None						
3. For calculating the stress distribution in soil, Boussinesq assumed the point load to exist	[]				
A) Below the ground level B) Below water table C) At the ground level D) At water table						
4. Geostatic stresses are due to	[]				
A) Static loads B) Dynamic load C) Self weight of soil D) None of above						
5. The value of vertical stress	[]				
A) Decreases with an increase in (r/f) ratio B) Decreases with a decrease in r/f ratio						
C) Increase with an increase in (r/f) ratio D) Difficult to guess						
6. Vertical stress on a vertical plane which is at particular radial distance from the axis of a vertical stress of a vertical plane which is at particular radial distance from the axis of a vertical stress of a vertica	ertical					
Concentrated load is	[]				
A) At all depth						
B) Decreases with depth constantly						
C) Increases first, attains a maximum value and then decreases						
D) Decrease first, attains a maximum and the increases						
7. The expression for vertical stress at point below the corner of a rectangular loaded area						
Was derived by	[]				
A) BoussinesqB) Westergaard'sC) NewmarkD) Fenske						
8. Select the incorrect statement	[]				
A) The stresses increases with depth because of over burden pressure						
B) The stresses decreases with depth because of the applied load						
Geotechnical Engineering (16CE122)		Page 1				

	QUESTION BAN	K	2018
C) The stresses decreases with depth	se of bath over burden and applied loads		
D) None of the above			
9. The specialty of the Newmark's d	n is that it can be used for finding the stress below	[]
A) Rectangular loaded areas, at any			
B) Circular loaded area, the centre			
C) Rectangular loaded area, below t	ner		
D) Any shape of loaded area at any			
10. Westergaard's theory is more ap	ate for	[]
A) Layered soils B)	geneous deposits		
C) Anisotropic soils D)	ally consolidated homogeneous soils		
11. When compared with Boussines	ficient values, the values of Westergaard's coefficient		
Will be		[]
A) Higher B) Smaller	C) Same D) Can't say		
12. The vertical stress at any point c	calculated approximated by	[]
A) Equivalent point load method	B) 2:1 Distribution method		
C) Sixty degrees distribution	D) All the above		
13. The upward pressure due to soil	e underside of a footing is generally called as	[]
A) Vertical stress B) Tangent	ess C) Contact pressure D) None of the above		
14. The maximum contact pressure	igid footing on cohesion less soil will be at	[]
A) Edges B) Center C)	een centre and edge D) none		
15. The expression for the vertical s	at a point p using Newmark's chart is	[]
A) $\sigma_{Z=I}$ n q B) $\sigma_{z}=\frac{l n}{q}$	C) $\sigma_z = \frac{q}{l n}$ D)None		
16. The westergaad analysis is used		[]
A) Homogeneous soils B) Cohesive	C) Sandy soils D) Stratified soils		
17. The stress developed at a point i	soil exactly a point load at the surface is	[]
A) Proportional to the depth of poin	B) Proportional to square of the depth of point		
C) Inversely Proportional to the dep	Doint D) Inversely Proportional to square of the depth	of	point
18. The effect of pore water pressure	to the volume of soil	[]
A) Increases B) Decrease	C) Constant D) None		
19. The effective stress is effective i	the void ratio of soil mass	[]

			QUESTION BAN	IK	2018
A) Increases	B) Decreases	C) Constant	D) None		
20. The curve joining th	ne points of equal stress i	intensity is called		[]
A) Isobar	B) Isochrones	C) Isotropic	D) None		
21. The admixture used	l in soil stabilization is			[]
A) Cement	B) lime	C) Bitumen	D) Any of the above		
22. In the modified pro-	ctor test the drop height of	of the rammer		[]
A) 30cm	B) 45cm	C) 60cm	D) 75cm		
23. Factors affecting the	e compaction is/are			[]
A) Water content	B) Compactive energy	C) Soil type	D) All the above		
24. The following soil l	has highest O.M.C			[]
A) Gravel	B) Sand	C) Silt	D) Clay		
25. Optimum moisture	content is the moisture c	ontent exhibit		[]
A) Settlement is maxim	num	B) Permeability is more	2		
C) Dry density is maxim	num	D) Shear strength is les	S		
26. Clay particles on th	e wet side of optimum m	oisture content exhibit		[]
A) Single grained struc	ture	B) Disperse structure			
C) Honeycomb structur	re	D) Flocculent structure			
27. Compaction of a so	il is measured in terms o	f		[]
A) Dry density	B) Specific gravity	C) Compressibility	D) Permeability		
28. Vibrator roller is us	eful for compacting			[]
A) Clayey soil	B) Cohesion less soil	C) Gravel	D) Crushed rock		
29. Relative compaction	n is			[]
A) Similar to relative de	ensity	B) A compaction proce	SS		
C) A ratio of γ_d field to	o the $\gamma_{\rm d}$ of lab	D) Dry density obtained	d in the field		
30. For pure sandy soil				[]
A) Compaction curve is	s not useful				
B) A well defined OMO	C exists				
C) Modified proctor test is recommended					
D) Jodhpur miniature c	ompaction test recomme	nded			
31. To avoid large swel	ling pressure under pave	ments and floors, the soi	l is compacted	[]
Geotechnical Engineering (16CE122)					Page 1

					Q	UESTION BAN	IK	2018
A) At OMC	B) Dry	of optimum	C) We	t of optimum	D) Nor	ne		
32. Clayey soils are bes	st compa	cted by					[]
A) Vibration	B) Kne	eading	C) Imp	act	D) All	the above		
33. The number of blows required for compacting each layer of soil in compacting test is					[]		
A) 25	B) 36		C) 56		D) 45			
34. The process of com	paction	of soil involves					[]
A) Expulsion of pore ea	ater	B) Expulsion o	f air	C) Both A&B		D) None		
35. For the same soil, in	ncrease i	n compaction ef	fort				[]
A) Does not affect OMC B) Increase OMC C) Decreases OMC D) Decreases					lensi	ty		
36. the most effective n	nethod f	or compacting sa	and is by	using			[]
A) Pneumatic rollers		B) Sheep foot 1	ollers	C) Steel typed	rollers	D) Vibration		
37. In modified proctor	test the	drop of height o	f ramme	er is			[]
A) 30 cm		B) 45 cm		C) 60 cm		D) 75 cm		
38. Compaction of soil							[]
A) Increases dry density	У	B) Decreases p	orosity	C) Both a&	b	D) None		
39. Compaction process	s may be	e accompanied b	У				[]
A) Rolling	B) Tan	nping	C) Vib	ration	D) Any	of the above		
40. The ratio of dry den	sity obt	ained in the field	to the p	proctor's maximu	ım dry d	ensity is called	[]
A) Compaction energy	B) (Compaction effor	rt	C) Relative con	npaction	D) No	ne	

QUESTION BANK	2018
č	

Course & Branch: B.Tech - CE

2M

2M

2M

2M

2M

10M

10M

Regulation: R16

3. Obtain the differential equation defining the one-dimensional consolidation as given by Terzaghi, Listing the various assumptions 10M

UNIT –VI

- 4. Discuss the spring analogy for primary consolidation. What are it uses
- 5. In a consolidation test the following results have been obtained. When the load was changed from 50 kN/m² to 100 kN/m², the void ratio changed from 0.70 to 0.65. Determine the coefficient of volume Decrease, m_v and the compression index, C_c 10M
- 6. A sand fill compacted to a bulk density of 18.32 kN/m³ is to be placed on a compressible saturated Mass deposit 4 m thick. The height of the sand fill is to be 3.5 m. If the volume compressibility m_{ν} Of the deposit is $6.5 \times 10^{-4} \text{ m}^2/\text{kN}$, estimate the final settlement of the fill. 10M
- 7. A layer of soft clay is 5 m thick and lies under a newly constructed building. The weight of sand Overlying the clayey layer produces a pressure of 250 kN/m² and the new construction increases the Pressure by 120 kN/m². If the compression index is 0.5, compute the settlement. Water content is 40% and specific gravity of grains is 2.68. 10M
- 8. The settlement analysis (based on the assumption of the clay layer draining from top and bottom Surfaces) for a proposed structure shows 3 cm of settlement in four years and an ultimate Settlement of 10 cm. However, detailed sub-surface investigation reveals that there will be no Drainage at the bottom. For this situation, determine the ultimate settlement and the time required For 2.5 cm settlement. 10M
- 9. The void ratio of clay A decreased from 0.574 to 0.512 under a change in pressure from 125 to 185 kg/m^2 . The void ratio of clay **B** decreased from 0.608 to 0.592 under the same increment of Pressure. The thickness of sample A was 1.5 times that of B. Then time required for 50% Consolidation was three times longer for sample **B** than for sample **A**. What is the ratio of th Coefficient of permeability of A to that of B 10M

10. A saturated soil has a compression index of 0.25. Its void ratio at a stress of 10 kN/m^2	² is 2.06 and
Its permeability is 3.7×10^{-7} mm/s. Compute	
(<i>i</i>) Change in void ratio if the stress is increased to 18.5 kN/m^2 ;	4M
(<i>ii</i>) Settlement in (<i>i</i>) if the soil stratum is 5 m thick; and	3M
(iii) Time required for 40% consolidation if drainage is one-way.	3M

dSb
SIDDHARTH
PITTLR VSTB/3001

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : Geotechnical Engineering (16CE122)			Course & Bran	Course & Branch: B.Tech - CE		
Year & Sem: III-B.Tec	ch & I-Sem		Regulation: R1	6		
		<u>UNIT –IV</u>				
1. Consolidation of soil	is a load which is			[]	
A) Static and short term	1	B) Dynamic and short to	erm			
C) Dynamic and log ter	m	D) Static and log term				
2. Time is an important	parameter in the conso	lidation of		[]	
A) Sands only	B) Clay only	C) Both sands and clays	D) None			
3. 'Primary compression	on' is mainly due to exp	ulsion of		[]	
A) Air	B) Water	C) Both air and water	D) None			
4. 'Secondary consolida	ation' is mainly due to a	expulsion of		[]	
A) Highly Viscous wate	er	B) Plastic readjustment	of solid particles			
C) Both (A) and (B)		D) None of the above				
5. If a soil has ever been	n subjected to a pressur	e in excess of its present o	ver burden, the soil is			
Said to be				[]	
A) Pre-consolidated		B) Normally consolidat	ed			
C) Under consolidated		D) None of the above				
6. Coefficient of consol	idated depends upon			[]	
A) Permeability		B) Coefficient of volum	le change			
C) Unit weight of wate	er	D) All the above				
7. The unit of coefficien	nt of consolidation is			[]	
A) $\frac{cm}{sec}$	B) $\frac{\text{cm2}}{\text{sec}}$	C) $\frac{cm}{sec2}$	D) No units			
8. The ratio of settleme	nt at any time't' to the	inal settlement is known a	S	[]	
A) Coefficient of conso	blidation B) De	gree of consolidation				
C) Time factor	D) Co	onsolidation of undisturbed	l soil			

			QUESTION F	BANK	2018
9. 'Isochrones' are the	curves showing distribut	ion of		[]
A) Total settlement	B) Total pressure	C) Excess hydrostatic p	ressure D) No	ne	
10. The slope of is any	point at a given time ind	icates the rate of change	of	[]
A) Effective stress with	depth	B) Effective stress with	time		
C) Pore water pressure	with time	D) Pore water pressure	with depth		
11. Time factor is				[]
A) A non dimensional	parameter	B) A function of degree	of consolidation		
C) Directly proportiona	l permeability of soil	D) All the above are con	rrect		
12 .In the soil sample o	f a consoled meter test, p	oore water pressure is		[]
A) Minimum at the cen	ter	B) Maximum at the top			
C) Maximum at the bot	tom	D) Maximum at the cen	ters		
13. Which of the follow	ving soils will generally l	have maximum compress	ibility,	[]
A) Gravels	B) Sands	C) Slits	D) Clays		
14. The ultimate consol	lidation settlement of a so	oil is		[]
A) Directly proportiona	l to the compression ind	ex			
B) Decrease with the in	crease in the initial void	s ratio			
C) Both (A) & (B)					
D) None					
15. A saturated clay lay the time required to atta	ver with single drainage ain 50%	face take 4 years to attain	1 50% layer had do	uble Dra [unage, then]
A) 8	B) 4	C) 2	D) 1		
16. In consolidation tes	ting, curve fitting metho	d is used to determine		[]
A) Compression index		B) Swelling index			
C) Coefficient of conso	lidation	D) Time factor			
17. Secondary consolid	ation is			[]
A) Caused by hydrodyn	namic lag				
B) Caused by creep					
C) Large for the pressures below the pre- consolidation pressure					
D) Very small for highly plastic clays and organic clays.					
18. The recompression	index is about of t	he compression index		[]
A) 5 times	B) $\frac{1}{5}$	C) $\frac{1}{2}$	D) $\frac{1}{20}$		
Geotechnical Engineeri	ing (16CE122)				Page 1

				QUESTION BAN	K 20	18	
19. Consolidation time	of a soil sample				[]	
A) Increases with an inc	crease permeability	B) Iı	ncreases wit	th a decreases in compre	essibility	1	
C) Increases with decre	ase in unit weight of wa	ter D) I	ncreases wit	th a decrease in permea	bility		
20. The ultimate settlen	nent of a soil deposit inc	reases with			[]	
A) An increases in the	compression index	B) An increa	uses in the ir	nitial void			
C) A deceases in thickn	less of the stratum	D) An increa	ase in time				
21. Consolidation theor				[]		
A) Rankine	B) Westergaard	C) Skemptor	1	D) Terzaghi			
22. Consolidation is ge	enerally is generally cons	idered to be a	function of		[]	
A) Total stress	B) Neutral stress	C) Effective	stress	D) None			
23. Consolidation is a p	process involving				[]	
A) Sudden compression	n of soil	B) Tilting an	d failure of	structure			
C) Abnormal sinking of	f foundation	D) Gradual e	expulsion of	f pore water			
24 .When a static load i	s applied, the consolidat	ion is fast in t	he case of		[]`	
A) Clays	B) Silty clays	C) Sandy sile	ts	D) Sands			
25. The coefficient of a	consolidation of a soil is	affected by			[]	
A) Compressibility only	y	B) P	ermeability	only			
C) Both compressibility	and permeability	D) N	Jone				
26. The expression for	organic soil and peats is				[]	
A) $C_C = 0.009(LL-10\%)$)	B) $C_C = 0.00$	9(10% - LL))			
C) $C_C = 0.1(LL-20\%)$		D) $C_C = 0.1(2)$	20%-LL)				
27. The maximum over	consolidation ratio of n	ormally conso	lidated soil	is	[]	
A) One	B) Two	C) Three		D) Four			
28. Compressibility of	a clayey soil will be				[]	
A) Equal to that of san	dy soils						
B) Greater than sandy s	oils						
C) Greater than that of	a normally consolidated	clay					
D) Less than that of nor	D) Less than that of normally consolidated clay						
29 .As the value of drai	nage path increases the t	ime for conso	lidation wil	1	[]	
A) Decrease	B) Increase	C) Constant		D) can't say			

30. The relationship between the time factor T_v coefficient of consolidation C_v the length of drainage path d, and time t is given by A) $T_{V} = (C_{V}D^{2})/t$ B) $T_{V} = (2CVD2) / t$ C) $T_v = (3 C_v D^2) / t$ D) $T_v = (C_v D^2) / 4t$ 31. The time factor for a particular degree of consolidation ſ 1 A) Depends upon the coefficient of consolidation B) Depends upon the drainage path C) Depends upon the distribution of initial excess hydrostatic pressure D) None of the above 32. The compression of soils occurs rapidly if voids are occupied by ſ 1 A) Air B) Water C) Partly air& water D) None of the above 33. The compression resulting from long term static load and resulting expulsion of water is known as [1 A) Compaction B) Inverse swelling C) Consolidation D) None of the above 34. The compressibility of a field deposits it ſ 1 A) The same as that shown by a laboratory sample B) Greater than that shown by a laboratory sample C) Smaller than that show by a laboratory D) None 35. The co-efficient of Consolidation C is given by ſ 1 C) K=(γm_V)/C D)C=(γm_V)/K A) C=K/(γm_V) B)K =C/(γ m_V) 36. Mathematically speaking, the time taken for 100% consolidation is ſ 1 C) Zero D) Infinite A) 5 years B) 10 years 37. The ratio of settlement at any time t, to the final settlement is called as [1 B) Partial settlement ratio A) Percentage settlement C) Degree of consolidation D) Residual consolidation 38. A clay deposit subject to pressure in the past which is more than the present over burden Pressure is known as ſ 1 A) Normally consolidated soil B) Over-consolidated soil C) Under-consolidated soil D) None of the above 39. Secondary consolidation is [1 A) Caused by hydrodynamic lag B) Caused by hydrostatic pressure

Geotechnical Engineering (16CE122)

			QUESTION BA	NK 2	018
C) Caused by cre	eep	D) None			
40. For a soil layer with double drainage and thickness H, the drainage path is equal to			nage path is equal to	[]
A) 2H	B) H/2	C) H ²	D) None of the above		

Course & Branch: B.Tech - CE

Subject with Code : Geotechnical Engineering (16CE122)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Year & Sem: III-B.Tech & I-SemRegulation: R16		
<u>UNIT –V</u>		
1. Explain the principle of the direct shear test. What are the ad Limitations	lvantages of this test? What are its 10M	
2. Briefly explain how you conduct the triaxial compression tes The soil from the test data	st? Compute the shear parameters for 10M	
3. Briefly explain how you conduct Unconfined compression T	Sest 10M	
4. Describe the vane shear test with neat a sketch	10M	
 5. Write brief critical notes on: (a) Mohr's Circle (b) Explain the Mohr-Coulomb strength envelope 	5M 5M	

- 6. The stresses at failure on the failure plane in a cohesionless soil mass were Shear stress = 4 kN/m^2 ; Normal stress = 10 kN/m^2 . Determine the resultant stress on the failure plane, the angle of internal Friction of the soil and the angle of inclination of the failure plane to the major principal plane. 10M
- 7. Calculate the potential shear strength on a horizontal plane at a depth of 3 m below the surface in a Formation of cohesionless soil when the water table is at a depth of 3.5 m. The degree of saturation May be taken as 0.5 on the average. Void ratio = 0.50; grain specific gravity = 2.70; angle of internal Friction = 30° . What will be the modified value of shear strength if the water table reaches the Ground surface?
- 8. A particular soil failed under a major principal stress of 300 kN/m² with a corresponding minor Principal stress of 100 kN/m². If, for the same soil, the minor principal stress had been 200 kN/m². Determine what the major principal stress would have been if (a) $\varphi = 30^{\circ}$ and (b) $\varphi = 0^{\circ}$. 10M
- 9 A triaxial compression test on a cohesive sample cylindrical in shape yields the following effective Stresses:

Major Principal stress ... 8 MN/m²

Minor principal stress ... 2 MN/m²

Angle of inclination of rupture plane is 60° to the horizontal. Present the above data, by means of a Mohr's circle of stress diagram. Find the cohesion and angle of internal friction.

 10. A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into a soft clay at the bottom of a bore hole. Torque was applied and the value at failure was 45 Nm. Find the shear strength of the clay on a Horizontal plane.

Prepared By: K.HEMANTH KUMAR

	SIDDHARTH G	ROUP OF INSTITUTIO	DNS :: PUTTUR d – 517583		
QUESTION BANK (OBJECTIVE)					
Subject with Code : G	eotechnical Engineer	ing (16CE122)	Course & Br	anch: B.'	Tech - CE
Year & Sem: III-B.Tee	ch & I-Sem		Regulation:	R16	
		<u>UNIT –V</u>			
1. Shearing strength of	cohesion less soil dep	pends upon		[]
A) Dry density	B) Void ratio	C) Loading rate	D) Normal stress		
2. Vane shear test is use	ed for			[]
A) Measuring shear stre	ength of cohesive soil	B) Measuring void ra	tio of sandy soils		
C) Measuring bearing of	capacity of soils	D) All the above			
3. The effective stress i	S			[]
A) Zero	B) 90 C) I	Limited to a maximum of	45 D) All the a	bove	
4. Unconfined compres resistance is	ssion test is generally	done on saturated clays fo	or which the apparent an	igle of sh	earing]
A) 0	B) 15 ⁰	C) 22 1/2 ⁰	D) 30 ⁰		
5. Unconfined compres	ssion strength is obtain	ned from		[]
A) Under	B) Drained test	C) Slow test	D) Consolidated dra	ined test	
6. In the unconfined co calculated by	ompression strength, t	he corrected area of cross-	-section (A _C) at any stra	in can be []
A) $A_C = A_0$	B) $A_C = \frac{A0}{1+\varepsilon}$	C) $A_C = A_0 (1-\varepsilon)$	D) $A_C = \frac{A0}{1-\varepsilon}$		
7. If a clayey soil speci	men is subject to a ve	rtical compressive load, th	ne angle by tracks		
With the horizontal i	s			[]
A) Zero	B) 45 ⁰	C) 90 ⁰	D) 180 ⁰		
8. The unconfined com	pression test can be c	onducted on		[]
A) Sandy	B) Clayey C) I	Both sandy and clayey soil	ls D) None		
9. The angle between the	he two planes on whic	ch the shearing stress is ze	ro is	[]
A) Zero	B) 30 ⁰	C) 45 ⁰	D) 90 ⁰		
10. In Mohr's circle the origin of planes is	e angle made by the p	lane which consists of max	ximum shear stress with	n horizon [tal at]
A) Zero	B) 45 ⁰	C) 90 ⁰	D) 180 ⁰		
11. The maximum shea	ar stress in case of Mo	hr's circle will be numerio	cally equal to	[]
Geotechnical Engineer	ring (16CE122)]	Page 1

				QUESTION BAN	IK	2018
A) 1	B) 3	C) $\frac{(\sigma 1 - \sigma)}{2}$	σ3)	D) $\frac{(\sigma 1 + \sigma 3)}{2}$		
12. The shear stress on two planes which are at right angles to each other are				are	[]
A) Numerically equal and of the same sign B) Numerically equal and are of the opposite			nd are of the opposite si	gn		
C) Not equal		D) Can	't say			
13. The shape of plot between shear and normal stresses according to Mohr's theory is				ohr's theory is	[]
A) Straight line	B) Curve	C) Ellij	otical	D) All		
14. Expansion of soils u	under shear is known as				[]
A) Liquefaction	B) Volumetric deforma	tion	C) Critical expa	ansion D) Dilatancy		
15. In a strain-controlle	ed shear test				[]
A) The shear force is in	creased at a constant rat	e	B) The shearing	g strain increases at a giv	ven	rate
C) Both a & b			D) None			
16. Undrained shear str	ength S_u of saturated clay	y tested i	n unconfined co	mpression is given in te	rm o	of
Unconfined compre	essive strength quas				[]
A) $S_u = \frac{1}{2} q_u$	B) $S_u = q_u$	C) $S_u = 2$	2 q _u	D) $S_u = 3q_u$		
17. Shear strength of so	il is determined by the e	quation			[]
A) C=S+ σ tan φ	B) $\sigma = C + S \tan \varphi$	C) S=C	$C+\sigma \tan \varphi$	D) None		
18. The stress that is responsible for the mobilization of shearing strength of a soil				n of a soil	[]
A) Total stress	B) Effective stress	C) Neu	tral stress	D) None		
19. The shear strength of	o f plastic undrained clay	depends	s upon		[]
A) Internal friction	B) Cohesion	C) Both	n a & b	D) Neither a & b		
20. Drainage conditions	s during test can be contr	olled bes	st in		[]
A) Direct shear test		B) Van	e shear test			
C) Unconfined compres	ssion test	D) Tria	xial shear test			
21. The type of test in which no significant volume changes are expected is				lis	[]
A) Consolidated drainage test B) Consolidated un drained test			ined test			
C) Unconsolidated un drained test D) All the above						
22. If the stress-strain curve of a clayey soil showed a peak, it can be					[]
A) Normally consolidated clay B) Under consolidated clay			clay			
C) Over consolidated clay D) None						
23. The type of shearing test in which there is a pre-determined failure plane				[]	
Geotechnical Engineer	ring (16CE122)					Page 1

A) Direct shear test	B) Triaxial test	C) Vane shear test	D) Unconfined comp	pression	n test
24. The shear failure e	xhibited by loose sands	is known as		[]
A) Elastic failure	B) Plastic failure	C) Brittle failure	D) None of the above	e	
25. The shear failure exhibited by dense sands is known as				[]
A) Elastic failure	B) Plastic failure	C) Brittle failure	D) None of the above	e	
26. Clays generally ex	hibit plasticity property	when they are mixed with	h	[]
A) Kerosene	B) Oil	C) HCL	D) Water		
27. The shear strength	of sand s with the follow	wing shape will be more		[]
A) Sharp edged particl	es B) Rounded e	edged particles C) Fl	at particles D) N	lone	
28. In a consolidated d	rained test on a normall	y consolidated clayey so	ils, the volume of		
The soil during the	shearing will			[]
A) Remain same	B) Increase	C) Decrease	D) Can't say		
29. The stress-stain cu	rve of an over consolida	ted clay is similar to that	t of	[]
A) Gravels	B) Loose sands	C) Silts	D) Dense sands		
30. In the triaxial test,	the intermediated princi	pal stress will be equal to	0	[]
A) Major Principal stre	ess	B) Deviator stress			
C) Minor principal stre	ess	D) Average of major	and minor principal stre	sses	
31. Vane shear test is a	ì				
A) Field test	B) Laboratory test	C) Both A&B	D) None		
32. Stress distribution	on the failure plane in th	ne case of a triaxial test is	8	[]
A) Zigzag	B) Non-uniform	C) Uniform	D) Can't say		
33. In unconfined com	pression test, alround st	ress is		[]
A) Equal to major prin	cipal stress	B) Half the major prin	ncipal stress		
C) Equal to zero		D) Equal to intermedi	ated principal stress		
34. The value of cohes	ion of saturated clay wi	ll be times the va	alue of confined		
Compression stren	gth			[]
A) 2	B) 1.0	C) 0.5	D) Zero		
35. The phenomenon v	when the sand losses its	shear strength due to osc	illatory motion in		
Saturated conditio	n is known as			[]
A) Quick sand	B) Plastic sand	C) Liquefaction	D) All the above		
36. The strength envel	ope of a pure cohesive s	oil is		[]
Geotechnical Enginee	ering (16CE122)				Page 1

			QUESTION BAN	ΙK	2018
A) Vertical	B) Inclined	C) Horizontal	D) Curvilinear		
37. The direct shear tes	t is ideally suited for con	ducting drained tests on		[]
A) Cohesive soils	B) Cohesion less soils	C) Any soil	D) Clayey soil		
38. Unconfined compression test is generally performed on				[]
A) Sandy soils	B) Silty soils	C) Intact saturated clay	D) fissure clay		
39. The shear strength of	of a soil is a function of			[]
A) Cohesion only		B) Angle of internal fri	ction only		
C) Normal stress also		D) None of the above			
40. The angle of inclination of the coulomb's failure envelope with the horizontal is called []]
A) Angle of repose	B) Angle of friction	C) Angle of internal fri	ction D) Frictional r	esist	ance